
Bayesian Approach of Biomarker Density Estimation
Using Pooled Data

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master’s of Science

Mathematical Sciences

by

Chase Joyner

May 2016

Accepted by:

Dr. Christopher McMahan, Committee Chair

Dr. Yingbo Li

Dr. Brook Russell



Abstract

In this paper, we introduce an approach which can be used to estimate individual biomarker

densities by using pooled data under a Bayesian framework. Group testing can effectively reduce the

cost of testing individuals for certain infectious diseases. In modeling the parameters of interest, we

first consider a univariate population in which all individuals are equally likely to be infected with

the disease. Then we extend this setup to a regression setting to account for covariate information

of each individual, inducing a heterogenous population.
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Chapter 1

Introduction

Biomarkers are an indicator of infectious diseases by using biological specimens such as

blood, urine, or other DNA. The goal of this paper is to accurately model individuals’ biomarkers

under a Bayesian paradigm by placing the individuals into groups and performing a single test on

the entire group. As a result, the cost of testing all individuals is dramatically reduced because the

number of tests performed is lower. When a group tests positive for a disease, all individuals in that

group are then retested for that disease to help identify all positives.

Bayesian inference is a method in which Baye’s rule is primarily used in order to obtain

a posterior distribution that can provide all information on unknown parameters of interest. One

benefit of using Bayesian methods rather than Frequentist methods is that instead of obtaining just

point estimates and confidence intervals for the parameters, a Bayesian obtains an entire distribution

for the parameters of interest. For example, suppose that you flip a fair coin 100 times and record 64

heads and 36 tails. Would you consider the coin to be bias? As you can see, a Frequentist approach

requires a larger sample size to obtain a long-run frequency for a better point-estimate. This leads us

towards a Bayesian approach, where we can include prior knowledge of the coin to assess it fairness.

In section 2 of this paper, we discuss the methods used to obtain, or empirically estimate,

the posterior distributions, which provides information about the unknown parameters used to

model the individual biomarkers. These methods include Bayesian inference, sampling techniques

to empirically estimate these parameters, and generalized linear models for a regression setting. The

posterior distribution, if obtainable, provides all information on the unknown parameters. However,

if the posterior distribution is not obtainable, such as it relies on other unknown parameters or
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is not recognizable, then Markov chain Monte Carlo (MCMC) can be used to draw samples from

the posterior distributions. Two common MCMC algorithms include the Gibbs sampler and the

Metropolis-Hastings algorithms. These methods allow for the inclusion of covariate information

through a generalized linear model (GLM); e.g. see [1]. The framework under GLMs is built upon

the assumption that we have observations distributed according to some exponential family [4]. With

these MCMC sampling techniques, we are able to obtain a sample of the parameters as if we drew

them directly from the posterior distribution [2].

The remainder of the report is organized as follows. In section 3 we introduce our notation

and consider different models based on certain assumptions about the individual biomarkers. In

section 4, we provide simulation results to demonstrate that these models can, in realistic situations,

accurately estimate the parameters of interest to be used in modeling the biomarkers.
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Chapter 2

Methods

2.1 Bayesian Inference

Bayesian techniques combine a priori information and observed data through the use of

Baye’s rule to obtain a posterior distribution. The a priori information specifies a prior distribution,

denoted π(θ), that uses a person’s belief of the true value of the parameters. The observed data

specifies a likelihood function when given the unknown parameters, denoted f(y|θ). Notice that

these are both functions of the parameters of interest and by applying Baye’s rule as follows, we can

obtain posterior distribution [3]

f(θ|y) =
f(y|θ)π(θ)

f(y)
∝ f(y|θ)π(θ). (1)

Generally, we simplify the work by finding the distribution that is proportional to the posterior

distribution, and then integrating over the parameter space while setting equal to 1 to find the

normalizing constant. The posterior distribution is an update of the prior distribution after observing

the data. In common situations, the posterior distribution is not obtainable and so we introduce

Markov chain Monte Carlo (MCMC) methods used in the modeling section of this paper. These

MCMC techniques are used to obtain samples of the unknown parameters as if they were drawn

directly from the posterior distribution, and in turn can empirically estimate the distribution.
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2.2 Gibbs Sampling

The Gibbs sampling algorithm generates a sequence of samples of the unknown parameters

by sampling from the full-conditional distributions, if possible. To do this, we use the posterior

distribution in (1) to obtain the full-conditional distributions

f(θi|θ(−i),y) ∝ f(y|θ)π(θi|θ(−i)),

where θ(−i) = (θ1, ..., θi−1, θi+1, ..., θp). Notice that here we do not need to include the prior distri-

bution π(θ(−i)) since it is constant with respect to the density of θi and is therefore just a part of

the normalizing constant. Given an initial value of each component of θ, denoted θ
(0)
i , proceed as

follows:

1. Set t = 1;

2. Sample θ
(t)
i ∼ f

(
θi

∣∣∣θ(t)1 , ..., θ
(t)
i−1, θ

(t−1)
i+1 , ..., θ

(t−1)
p ,y

)
for i = 1, ..., p;

3. Set θ(t) = (θ
(t)
1 , ..., θ

(t)
p );

4. Increment t by 1 and return to step 2.

Once convergence of the chain {θ(0),θ(1), ...,θ(s)} is obtained, the procedure should be repeated

until a sequence of desired length is generated, say m. Then, {θ(s), ...,θ(s+m)} represents a sample

from the posterior distribution. With this sequence of samples, we can use the weak law of large

numbers to induce properties such as

1

s

s∑
i=1

θ(s) −→ E[θ|y]

as s → ∞. That is, as the number of iterations increases without bound, the mean of the sample

obtained from the Gibbs sampling algorithm converges to the true mean [3]. Next, we introduce the

Metropolis-Hastings algorithm, which can be used in the situation where the full-conditionals are

analytically obtainable, but not recognizable.
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2.3 Metropolis–Hastings

The Metropolis-Hastings algorithm is another MCMC technique that can be used when

the posterior distribution is not recognizable and therefore cannot be sampled from. Suppose that

we have an initial value of our parameter, θ
(0)
i . If we propose a new value θ?i from a proposal

distribution, say Jθi , then an intuitive idea is to include this value in our sample if the posterior

density of this proposed value is larger than the posterior density of the current parameter value.

Otherwise, we should accept the proposed value θ?i with some probability. An instinctive way to

achieve this is to calculate the ratio of these densities and the use of a correction factor. The

correction factor is the ratio of the proposal distribution used to propose θ?i , where the numerator

is the proposal distribution evaluated at the current parameter value and the denominator is the

proposal distribution evaluated at the proposed value. That is, the acceptance ratio is [1]

r =
f
(
θ?i

∣∣∣θ(t)1 , ..., θ
(t)
i−1, θ

(t−1)
i+1 , ..., θ

(t−1)
p ,y

)
f
(
θ
(t)
i

∣∣∣θ(t)1 , ..., θ
(t)
i−1, θ

(t−1)
i+1 , ..., θ

(t−1)
p ,y

) J
(
θ
(t)
i

∣∣∣θ?i )
J
(
θ?i

∣∣∣θ(t)i ) . (2)

Then, we set our acceptance probability to be α = min{r, 1} and then set

θ
(t+1)
i =


θ?i : with probability α

θ
(t)
i : with probability 1− α.

A summary of the Metropolis-Hastings algorithm is as follows:

1. Given an initial value θ(0), set t = 1;

2. For each i = 1, ..., p where f(θi|θ(−i),y) is not recognizable,

2a. Propose θ?i from Jθi and compute r;

2b. Set θ
(t)
i =


θ?i : with probability α

θ
(t−1)
i : with probability 1− α.

3. Set θ(t) = (θ
(t)
1 , ..., θ

(t)
p );

4. Increment t by 1 and return to step 2.

A desirable property of the proposal distributions is that the proposed values get accepted between

20% and 50% of the time in order to have low correlation in the sequence but to still allow the chain
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to move around the parameter space to converge as efficiently as possible [3]. However, in some

situations this can be difficult to achieve, such as in the case of higher dimensions. With this said,

in section 2.5 we discuss a smarter way to obtain a proposal distribution that will yield much higher

acceptance rates, around 95%.

2.4 Generalized Linear Models (GLMs)

The framework developed under a generalized linear model allows the inclusion of covariate

information into a model. A generalized linear model is a generalization of regular linear regression to

response types other than normally distributed ones. There are three major components to a GLM.

The first, and most obvious component, is the random variable. This will specify the conditional

distribution of the response variable, say Yi, given the covariates in the model. It is assumed that

this distribution is a member of the exponential family, i.e. it has the form

f(yi|θi) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
,

where the covariates are included in θi. The second component is a linear predictor, which is most

commonly a linear function of the regressors, denoted

ηi = X′iβ = β0 + β1xi1 + ...+ βpxir,

where Xi is a vector of covariates for the ith observation. The third requirement for a GLM is a

smooth and invertible link function, g(·), which relates the mean of the response variable to the

linear predictor. That is to say that if µi = E[Yi], then

g(µi) = ηi = X′iβ.

A link function that can be considered in every situation is the canonical link θi = ηi. However,

there are many link functions that could be used, which depends on the situation or beliefs of how

the true mean structure is related to the predictors.
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2.5 Bayesian Iterative Re–weighted Least Squares

This algorithm mimics the iterative re-weighted least squares used by Frequentists in order

to obtain a nice proposal distribution to be used in a Metropolis-Hastings iteration. In regression

modeling, the parameters of interest include the regression coefficients vector β, which can be difficult

to find an appropriate proposal distribution. We begin by placing a normal prior distribution on β,

say N(a,R). Then under the GLM framework, the posterior distribution for β takes the form [1]

f(β|y) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

∑
i

yiθi − b(θi)
φ

}
, (2)

where β is included in θi. The idea is to approximate this posterior distribution with a normal

distribution to be used as the proposal distribution, and hence the high acceptance rate mentioned

in section 2.3. By carrying out a second order Taylor expansion of the likelihood term

`(β) =
∑
i

yiθi − b(θi)
φ

around some value of β, say β(t−1), and then combining terms in (2), we obtain a normal distribution

with mean vector

m(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1
×
(

R−1a +
1

φ
X′W(β(t−1))ỹ(β(t−1))

)
(2.1)

and covariance matrix

C(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1
, (2.2)

where W(β(t−1)) is a diagonal weight matrix with entries

Wii(β
(t−1)) =

1

b′′(θi)g′(µi)2

and ỹ(β(t−1)) is a vector of transformed observations with entries

ỹi(β
(t−1)) = ηi + (yi − µi)g′(µi).
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The function g is the link function. Then, N(m(t),C(t)) approximates the true posterior distribution

in (2). This is the distribution used as the proposal distribution, i.e. Jβ(t−1) = N(m(t),C(t)). This

method is summarized as follows:

1. Given an initial value β(0), set t = 1;

2. Propose β? from Jβ(t−1) and compute r;

3. Set β(t) =


β? : with probability α

β(t−1) : with probability 1− α.

4. Increase t by 1 and return to step 2.

The construction of the proposal parameters m(t) and C(t) approximates the posterior mode and

posterior covariance matrix for β. As a result, the acceptance rate in this method is extremely high,

usually 90% and higher, while keeping the correlation in the sequence low.
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Chapter 3

Models

3.1 Univariate Models

Let Cij denote the continuous individual biomarker concentration level for the ith specimen

in the jth pool of size cj , where i = 1, ..., cj and j = 1, ..., J . Also, let Cj denote the continuous

biomarker concentration level observed for the jth pool. In order to relate Cj to Cij , we assume that

Cj = c−1j
∑cj
i=1 Cij . This assumption is ubiquitously made in the statistical literature (see Faraggi

et al., 2003; Liu and Schisterman, 2003; Liu et al., 2004; Mumford et al., 2006; Bondell et al.,

2007; Vexler et al., 2008; Malinovsky et al., 2012), and we find it to be reasonable as long as the

pooled assessments contain like-volume specimens. Given Cij ∼ f(·|θ), we are left to estimate θ

from the observed data Cj , j = 1, ..., J . Since measurements of pooled data are taken, the individual

concentration levels are never observed, making the Cij latent variables. If the distribution of the

observed data, fCj , is obtainable, then the posterior distribution of θ is

f(θ|C) ∝
J∏
j=1

fCj (Cj |θ)× π(θ),

where π(θ) represents the prior distribution that is introduced because of our uncertainty in the

true values of θ.

We begin by assuming that Cij ∼ N(µ, σ2). Under the assumption that the pooled biomarker

concentration levels are the arithmetic mean of the individual biomarkers, it follows that
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Cj ∼ N(µ, c−1j σ2). We introduce the following prior distributions

µ|σ2 ∼ N
(
µ0,

σ2

n0

)
and σ2 ∼ IG

(
α0

2
,
β0
2

)
.

Under these prior formulations, the conditional posterior distributions are

µ|C, σ2 ∼ N

(∑J
j=1 cjCj + µ0n0

N + n0
,

σ2

N + n0

)

σ2|C ∼ IG
(
α0 + J

2
,
β0 +

∑J
j=1 cjC2j + n0µ

2
0

2
−

(
∑J
j=1 cjCj + µ0n0)2

2(N + n0)

)
,

where C = (C1, ..., Cj) and N =
∑J
j=1 cj . Here, we implement a Gibbs sampler to estimate θ. When

the concentration levels are non-negative and right-skewed as is the case in common practice, a

different model should be considered.

Now assume that Cij ∼ Gamma(α, β). As a consequence, we have the reasonable likelihood

Cj ∼Gamma(cjα, cjβ). We let the model parameters θ = (α, β) have independent prior distributions

α ∼ Exp(λ) and β ∼ Gamma(a, b).

The full conditional posterior distribution of β has a closed form while the conditional posterior

distribution of α does not. Specifically, we have

f(α|β,C) ∝

[
βNe−λ

∏J
j=1

(
cjCj

)cj]α∏J
j=1 Γ(cjα)

β|α,C ∼ Gamma

Nα+ a,

J∑
j=1

cjCj + b

 ,

in which Gibbs sampling and Metropolis-Hastings algorithm should be used.

Notice that the preceding setups have nice properties, i.e. that the posterior distributions

are easily obtainable. However, this is not always the case. Assume that the Cij independently arise

from a common probability density function fC(·|θ); but fCj (·|θ), which denotes the probability

density function of the observed pooled measurements, is not obtainable. To circumvent this issue,

we proceed by introducing the individual biomarker concentration levels as latent variables. More

specifically, introducing cj − 1 latent variables C̃ij for i = 1, ..., (cj − 1) for each group j = 1, ..., J
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remedies the unusable previous setup, which we can now express the conditional posterior distribu-

tion as

f(θ, C̃|C) ∝
J∏
j=1

[
fC

(
cjCj −

cj−1∑
i=1

C̃ij
∣∣∣∣θ) · cj−1∏

i=1

fC(C̃ij |θ)

]
× π(θ),

where C̃ = (C̃1, ..., C̃J) and C̃j = (C̃1j , ..., C̃(cj−1)j). We use a hybrid of Gibbs sampling and

Metropolis-Hastings algorithms to sample from the joint posterior distributions one variable at a

time. In each iteration of the MCMC, for each parameter (or latent variable) that has a conditional

posterior distribution in a common distribution family, we draw a random sample from that distri-

bution conditional on all other parameters fixed to their current values; while for each parameter

(or latent variable) that only has its conditional posterior density available up to some normalizing

constant, we use univariate Metropolis-hastings algorithm.

3.2 Modeling Covariates in a Regression Setting

In common practice, it can be beneficial to include covariate information into models. Up to

this point, we have only modeled the biomarker densities with the a single observation, the pooled

assessment for each group. Now, we introduce a covariate information matrix X whose ith row is a

vector of k covariates for individual i, i = 1, ..., N , where N =
∑J
j=1 cj .

We begin by assuming that the individual concentration levels have the distribution

Cij ∼ N
(
X′ijβ, σ

2
)
, where Xij is a vector of k covariates for the ith individual in the jth group.

Then, we have that

Cj ∼ N
(

X
′
jβ,

σ2

cj

)
,

where Xj = 1
cj

∑cj
i=1 Xij for j = 1, ..., J . It follows that the joint likelihood function is

C|β, σ2 ∼MVN
(
Xβ, σ2D

)
,

where C = (C1, ..., CJ), X =
(
1,X1, ...,XJ

)
, and D is a diagonal matrix with entries c−11 , ..., c−1J .

Analogous to the univariate setting, we specify the prior distributions

π
(
β|σ2

)
∼MVN

(
β0, σ

2Σ
)

π
(
σ2
)
∼ IG

(
α0

2
,
β0
2

)
.
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Therefore, we find that the full-conditional distribution of β is given by

β|C, σ2 ∼MVN

((
X
′
D−1X + Σ−1

)−1 (
C′D−1X + β′0Σ

−1)′ , σ2
(
X
′
D−1X + Σ−1

)−1)
.

Also, by integrating out β from the joint posterior distribution of β and σ2, we obtain the posterior

for σ2 to be

σ2|C ∼ IG
(
J + α0

2
,

1

2

[
C′D−1C + β′0Σ

−1β0 + β0 −A0A
−1A′0

])
,

where A = X
′
D−1X + Σ−1 and A0 = C′D−1X + β′0Σ

−1. In conclusion, we have

β|C, σ2 ∼MVN

((
X
′
D−1X + Σ−1

)−1 (
C′D−1X + β′0Σ

−1)′ , σ2
(
X
′
D−1X + Σ−1

)−1)
σ2|C ∼ IG

(
J + α0

2
,

1

2

[
C′D−1C + β′0Σ

−1β0 + β0 −A0A
−1A′0

])
.

Here we implement a Gibbs sampling algorithm to quickly estimate the parameters β and σ2.

Analogously to the univariate case, under the reasonable assumption that the pooled ob-

servations are non-negative and right-skewed, we now assume that Cij ∼ Gamma(α, µij/α), where

µij/α is the scale parameter, i = 1, ..., cj and j = 1, ..., J . Notice that this distribution can be

written as

fCij =
1

Γ(α)

(µij
α

)−α
Cα−1ij exp

{
−αCij
µij

}
= exp

{
− 1
µij
Cij − logµij

1/α
+ α logα− log Γ(α) + (α− 1) log Cij

}
.

Therefore, this distribution is a member of the exponential family. We also wish to include covariate

information about each individual, and thus relate the mean of this distribution to the covariates

via a link function. Since the mean µij must be positive valued, we use a log link as follows

logµij = X′ijβ.

The likelihood function can then be written in the form

fCij = exp

{
−e−X

′
ijβCij −X′ijβ

1/α
+ α logα− log Γ (α) + (α− 1) log Cij

}
.
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Note that the distribution of the pooled assessments is unobtainable here and so we introduce the

latent variables as before and use the joint posterior found below

f
(
θ, C̃|C

)
∝

J∏
j=1

[
fC

(
cjCj −

cj−1∑
i=1

C̃ij
∣∣∣∣θ) · cj−1∏

i=1

fC

(
C̃ij |θ

)]
× π(θ),

where θ = (α,β). Let α and β be independently distributed as before. Since we use a log link, β

can be on the entire real line, so we are able to use a multivariate normal prior. Also, as before, we

use Exp(λ) as the prior for α. That is, specify

β ∼MVN (β0,Σ)

α ∼ Exp(λ).

Denoting aj = cjCj −
∑cj−1
i=1 C̃ij and Xj as the vector of covariates for the last individual in group

j, the joint posterior distribution is

f
(
α,β, C̃

∣∣C) ∝ J∏
j=1

exp

{
e−X

′
jβaj + X′jβ

−1/α
+ α logα− log Γ (α) + (α− 1) log aj

}
·

cj−1∏
i=1

exp

{
e−X

′
ijβCij + X′ijβ

−1/α
+ α logα− log Γ (α) + (α− 1) log Cij

}
·

exp

{
−1

2
(β − β0)′Σ−1(β − β0)

}
· exp

{
−α
λ

}
.

Then, we have the posterior distribution for α is

f
(
α
∣∣β, C̃,C) ∝ exp {−αγ +N(α logα− log Γ(α))} ,

where

γ =

J∑
j=1

e−X
′
jβaj +

J∑
j=1

X′jβ −
J∑
j=1

log aj +

J∑
j=1

cj−1∑
i=1

e−X
′
ijβCij +

J∑
j=1

cj−1∑
i=1

X′ijβ −
J∑
j=1

cj−1∑
i=1

log Cij +
1

λ
.
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The posterior for β is

f
(
β
∣∣α, C̃,C) ∝ exp

{
− α

 J∑
j=1

e−X
′
jβaj +

J∑
j=1

X′jβ +

J∑
j=1

cj−1∑
i=1

e−X
′
ijβCij +

J∑
j=1

cj−1∑
i=1

X′ijβ


− 1

2
(β − β0)′Σ−1(β − β0)

}
.

Lastly, we have the posterior distribution for C̃ to be

f
(
C̃
∣∣α,β,C) ∝ exp

{
− α

 J∑
j=1

e−X
′
jβaj +

J∑
j=1

cj−1∑
i=1

e−X
′
ijβCij


+ (α− 1)

 J∑
j=1

log aj +

J∑
j=1

cj−1∑
i=1

log Cij

}.
In conclusion, the posterior distributions are

f
(
α
∣∣β, C̃,C) ∝ exp {−αγ +N(α logα− log Γ(α))} ,

f
(
β
∣∣α, C̃,C) ∝ exp

{
− α

 J∑
j=1

e−X
′
jβaj +

J∑
j=1

X′jβ +

J∑
j=1

cj−1∑
i=1

e−X
′
ijβCij +

J∑
j=1

cj−1∑
i=1

X′ijβ


− 1

2
(β − β0)′Σ−1(β − β0)

}

f
(
C̃
∣∣α,β,C) ∝ exp

{
− α

 J∑
j=1

e−X
′
jβaj +

J∑
j=1

cj−1∑
i=1

e−X
′
ijβCij


+ (α− 1)

 J∑
j=1

log aj +

J∑
j=1

cj−1∑
i=1

log Cij

}.
As for the proposal distribution for β, we use the methodology discussed in section 2.5. From the

likelihood function, we see

θij = − 1

µij
and b(θij) = log µij = − log(−θij).

Therefore, we have that

b′′(θij) =
1

θ2ij
= µ2

ij = exp{2X′ijβ} and g′(µij)
2 = exp{−2X′ijβ},
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and so the weight matrix W(β) = IN×N . Lastly, we find the transformed observations to be

C̃ij(β) = ηij + (C̃ij − µij)g′(µij) = X′ijβ +
(
C̃ij − exp{X′ijβ}

) 1

exp{X′ijβ}
.

This gives the proposal distribution for β to be a normal distribution with parameters

m(t) =
(
R−1 + αX′X

)−1 × (R−1a + αX′C̃(β(t−1))
)

and

C(t) =
(
R−1 + αX′X

)−1
.

From here, we implement a Metropolis-Hastings algorithm to update θ and C̃.
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Chapter 4

Simulations and Results

The design and results of our simulations are presented here. For each univariate model,

we simulated a sample of 1,000 individual concentration levels from the assumed true distribution

of individuals. Then, we placed these individuals into groups of size c = 4 and averaged the values

to create the pooled assessments. Next, we performed an MCMC to obtain 10,000 samples of each

parameter to generate parameter estimates, the lower 2.5% and upper 97.5% quantiles, and the

standard error of the parameter estimates. We repeated this for 1,000 simulated data sets and

averaged the estimates and standard errors, as well as calculated 95% coverage probabilities. The

results for the univariate normal model can be found in table 4.1 and the results for the univariate

gamma model can be found in table 4.2.

Parameter True Estimates CP95 SE

µ 3.4 3.3994 0.958 0.0289

σ2 0.8 0.8047 0.947 0.0718

Table 4.1: Results of univariate normal case.

Parameter True Estimates CP95 SE

α 2.1 2.2807 0.929 0.2454

β 0.8 0.8663 0.931 0.0912

Table 4.2: Results of univariate gamma case.

As we can see, both univariate models appeared to estimate the parameters well. In both situations,

the coverage probabilities were roughly around 95% and the standard errors are low. Although,
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the standard error for α appears to be higher than the other standard errors, this can be caused

by the posterior distribution for α not being recognizable, which can induce more variability in the

estimates. However, increasing the sample size effectively reduced the standard error and also led

to a better estimate. Next, we look at how the models in the regression setting performed.

For the two models in the regression setting, we generated the covariate matrix of dimension

N × 3 consisting of a column of all 1s for the intercept, a column of generated normal random

variables, and a random binary column of 0s and 1s. For the normal model we considered 400

individuals and for the gamma model we used 1,000 individuals. In both situations, we used a

common group size of c = 4 as before. We simulated 1,000 data sets and drew 10,000 samples each

parameter. Tables 4.3 and 4.4 found below display the results

Parameter True Estimates CP95 SE

σ2 0.8 0.7945 0.956 0.1098

β1 3 3.0074 0.953 0.23

β2 -2 -2.005 0.957 0.0878

β3 5 4.9867 0.952 0.2039

Table 4.3: Results of normal in regression setting.

Parameter True Estimates CP95 SE

α 5 4.693 0.876 0.4256

β1 -3 -2.983 0.972 0.0731

β2 0.75 0.749 0.973 0.0267

β3 1.1 1.083 0.968 0.0583

Table 4.4: Results of gamma in regression setting.

The results of the simulations performed appear to validate both models. The estimates for σ2 and

β are very close to the true values used to generate the individual concentration levels. Also, the

coverage probabilities are about 95% and the standard errors are low. As for the gamma model,

we were able to estimate β very well, but the estimate for α was low. This can be due to the high

standard error, which we saw occur in the univariate gamma model. However, increasing the sample

size and letting our chain run longer drastically improved the results.
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Chapter 5

Discussion

In this paper, we have introduced a way to model individual biomarkers in a Bayesian

paradigm using pooled observations of grouped individuals. We have motivated the usefulness of

Bayesian inference in this framework by simulations under reasonable assumptions. As a result,

group testing allows the cost of testing individuals for infectious diseases to be dramatically reduced

by lowering the number of tests performed. While Bayesian inference is an extremely important and

useful tool, it comes with drawbacks as does any statistical method. The computation time used

in these sampling techniques can often be highly expensive and thus efficient coding is vital. Also,

including incorrect prior knowledge into the models can greatly affect inference by drawing samples

in the wrong part of the parameter space, potentially leading to false positive or false negative results

for individuals. Another drawback worth mentioning was the starting value for β was crucial in the

Gamma model under the regression setting. However, there are many solutions to this. To this

end, our methodology provides a Bayesian perspective on this evolving area of Biomarker density

estimation.

5.1 Future Work

The extension to be done in the near future is to use the estimated parameters and the

individual likelihood function to find the optimal threshold for diagnosing individuals as either

positive or negative for the disease. This can be done by the use of Youden’s index, which is a

function of the specificity (true negative rate) and sensitivity (true positive rate). This index is
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between 0 and 1 and values near 1 indicate that the biomarker is very effective and values near 0

indicate that the biomarker has limited usefulness [5]. After successfully implementing Youden’s

index, it is desirable to compare certain models that we have discussed in this paper, along with

others such as Weibull, Log-Normal, etc. Another extension worth looking at is the use of different

group sizes, such as c = 2 or c = 3, to see if there are any effects. It seems reasonable to believe

that there exists an optimal group size, which would lead to better results.
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